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Abstract:  The main aim of this study has considered absorption and emission phenomenon where only two and three levels of the system take 

part and the dispersion phenomenon is dealt with at infrared frequency. The method has been used to treat the problem of co-related emission and 

photon echoes. It is relatively easy to make input and output calculations for a ruby laser in a hypothetical steady radiating state. Thus the rate 

equation approach to the problem provides a quantitive analysis of power emission from the system.         
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I. INTRODUCTION 

We limit our consideration to absorption and emission phenomenon up to two and three levels of the system. For two levels 

system, a net absorption takes place in thermal equilibrium condition. To have a net emission, the bulk matter is to be excited such 

that the equilibrium population between the levels is inverted. We note that  ω12 is the product of Einstein’s co-efficient of absorption 

of radiation 𝐵12 and photon density p(υ). As the system radiates, the photon density grows and ultimately attains a steady value. It is 

therefore interesting to solve the rate equation taking as a function of time, to begin with, and independent of time under the steady-

state condition.      

II. THEORY      

   We are all familiar with the process of spontaneous emission, in which an atom in an excited state 𝑬𝒊 can emit quantum 

radiation of frequency  𝝊𝒊𝒋 , thereby dropping to a lower energy state 𝑬𝒋 , according to the relation                      

                          𝑬𝒊  ⎯   𝑬𝒋  =  h 𝝊𝒊𝒋            (1)    

where h is the Planck’s constant. These jump occur at a rate 𝑨𝒊𝒋 with a resultant spatially isotropic rate of emission of power 𝒏𝒊 

𝑨𝒊𝒋 h𝝊𝒊𝒋 , Where 𝒏𝒊is the population of atoms in the excited states. Somewhat less familiar is the concept that these same atoms can 

be stimulated to emit radiation 𝝊𝒊𝒋 by being bathed in the radiation of the same frequency. The physical phenomenon which makes 

the laser possible is that of this stimulated emission of radiation. The rate of these stimulated jumps is proportional to the energy 

density u (𝝊𝒊𝒋 ) of the radiation and to the population difference 𝒏𝒊 − 𝒏𝒋, between the upper and lower energy states. Furthermore, 

the stimulated radiation exhibits the same directional and polarization characteristics as that of the stimulating radiation. This is the 

process that gives rise to the amplification and directional properties of lasers. Einstein showed that in the steady-state, an 

expression of the form,              

P (𝛖) 𝑩𝟏𝟐𝑵𝟏= P (𝛖) 𝑩𝟐𝟏𝑵𝟐+A𝑵𝟐                               (2) 

must be true to account for the transitions that take place under the influence of a broadened radiation field where P(𝛖) is the 

energy per unit volume per unit frequency interval A and B are the spontaneous and induced transition rate coefficients ( or Einstein’s 

coefficient). Einstein derived them originally, not based on field quantization, but rather by the use of classical arguments and 

thermodynamic considerations. The expression (e.g. 𝑩𝟐𝟏=𝑩𝟏𝟐 , 
𝑨𝟏𝟐

𝑩𝟏𝟐
⁄ =

𝟖𝝅𝒉𝝊𝟑  𝜼𝟑

𝒄𝟑   ) are found to agree with the results obtained 

based on field quantization.      

 The present work can define a transition rate from level 1to level 2 in the presence of a single-mode field as,                                      

     𝛚𝟏𝟐  = K < n >           (3)    

   whereas the transition rate from level 2 to level 1 is given by                    

        ω21  = K < n > + A          (4)       

As we pass from the single-mode radiation case to the broadband radiation case, the equation for the population difference in 

terms of the transition rates still holds, but now the transition rates 𝛚12  and 𝛚𝟐𝟏 given by (2.3) and (2.4) must be generalized by 

summation or integration over frequency. If the frequency distribution of the radiation field represented by < n(𝛖) > and the mode 

density  P(𝛖) are each assumed to be very slowly concerning the line shape factor contained in K(𝛖)                            K = 
 𝜋 𝜔

𝜋 𝜀
   

│𝜇12│2  

3
 

𝑔𝐿(𝛚.  ) 
1

𝑉
  , all frequency dependence other than the line shape factor may be removed from the integral. With this assumption, we 

arrive at,                    

𝛚12  = P (𝛖)𝐵12                                         (5)                           

   𝛚𝟐𝟏  = P (𝛖) 𝐵21+ A       (6)       

where P(𝛖) is the energy per unit volume per unit frequency interval defined by   

   P (𝛖) =   P (𝛖) h < n (𝛖) >                             (7)       

and                              𝐵12 = 𝐵21 = B =( 
1

ℎ𝜐
 ) V ∫ 𝐾𝑑

∞

0
   

 ith  A  given by                                         A =  
1

  𝑇𝑠𝑝
  = V ∫ 𝐾(𝜔) 𝑃(𝜔) 𝑑𝑤

∞

0
                  

(where 𝑇𝑠𝑝, 𝐾(𝜔) and 𝑃(𝜔) 𝑑𝝎 represent spontaneous emission time, single-mode spontaneous emission rate and number of 

modes per unit volume in a frequency range 𝑑𝜔, respectively) We see that the ratio of A to B is as follows:      
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𝐴

𝐵
=  h (𝛖) P(𝛖) = 

8𝜋 h υ3  η3

𝑐3                                (8)      

(from the results of mode density relationships). From (7) and (8) we find    

   
𝐴

𝐵𝑃
  =    

1

<𝑛>
       (9)           

where <n> is the expectation value of the number of photons in a single mode. From (9) we thus see that the induced transition 

rate B (emission or absorption) is <n> times that for spontaneous emissions.             

 The laser consists of a vast number of atomic amplifiers placed between two partially reflecting mirrors which cause radiation 

to travel back and forth through the amplifying medium. The electromagnetic field, building up within the laser, may be regarded as 

a field in a cavity that is weakly coupled to the outside. The different types of electromagnetic oscillations of the laser regarded as an 

isolated cavity are the well-known modes of oscillations or briefly modes.                                                                         

  It is relatively easy to make input and output calculations for a ruby laser in a hypothetical steady radiating state. 

Such calculations are of little value, however, because of the large intensity fluctuations which seem inherent in the situation.      

 The power generated at the frequency 𝜐21in a uniformly excited ruby laser of volume, V is     

      𝑃0 = 𝜔21(𝑁2 − 𝑁1) 𝑉 ℎ𝜐21       (10)         

Here 𝜔21 is proportional to the radiation density, and  𝑁2 = 𝑁1 depends upon the radiation density as well as on the intensity of 

excitation. Starting with zero radiation density at the frequency 𝜐21 when the threshold is first reached, the radiation density starts to 

fall again and an oscillation of intensity ensues. This oscillation is called pulsation. 

III. TRANSITION PROBABILITY FROM T - MATRIX CONSIDERATION:    

For the interaction problem of radiation and two-level system, it is essential to determine the complex probability amplitudes a (t) 

and b (t) for the two states  │a > and │b > respectively that solve the mechanical part of the interaction problem, because, these 

directly (and their different real combinations 𝑟1 𝑎𝑛𝑑 𝑟2 and𝑟3) give the various physical quantities of interest such as power emission 

from the system, polarization of the system, etc. Direct solutions of the differential equation for a(t) and b(t) which are obtained from 

the Schroedinger equation of the problem appeared in literature and were first given by Einstein in connection with the derivation of 

induced transition probabilities.          

 It is interesting to note that the T-matrices of interaction obtained by earlier workers have the elements which are just the 

probability amplitudes and their conjugates and are recognizable as Kayley-Klein parameters which are intimately connected with 

spatial rotation on quantum mechanics.                            

  When the system is initially in its higher state represented by the ket│a >, the state vector │ψ>, later t, is essentially 

the transformation of │a > by a matrix     

   T (t)  =  (
𝑎(𝑡) −𝑏+(𝑡)

𝑏(𝑡)   𝑎+(𝑡)
   )                                                (11)     

  In terms of the three well known real functions ω1,ω2 and ω3(ω′1,ω′2 𝑎𝑛𝑑 ω′3 in the primed frame; Hamiltonians 

in the primed frame appear as a constant.) of Feynman equation 
𝑑𝑟⃗⃗⃗⃗  ⃗

𝑑𝑡
  =  (  𝜔⃗⃗  ⃗ x 𝑟  ), the interaction matrices have been expressed as form 

= + 1 transition                               

                T (t) = ( 
𝑐𝑜𝑠  

𝛺𝑡

2
− 

𝑖𝜔′3

𝛺
    𝑠𝑖𝑛 

𝛺𝑡

2
      

−𝑖

𝛺
 (𝜔′

1 − 𝑖𝜔′2) sin
𝛺𝑡

2
  

−𝑖

𝛺
 (𝜔′

1 − 𝑖𝜔′
2) sin

𝛺𝑡

2
    𝑐𝑜𝑠  

𝛺𝑡

2
+ 

𝑖𝜔′3

𝛺
𝑠𝑖𝑛 

𝛺𝑡

2

)                                           (12) 

 with   = (  ω′21 + ω′22 +  ω′23 ) ; and for ∆m = 0 transitions       

 T (t) =  ( 
𝑐𝑜𝑠  

𝛺𝑡

2
− 

𝑖𝜔′2

𝛺
    𝑠𝑖𝑛 

𝛺𝑡

2
    

−𝑖𝜔′1

𝛺
  sin

𝛺𝑡

2
  

           
𝑖𝜔′1

𝛺
             sin

𝛺𝑡

2
    𝑐𝑜𝑠  

𝛺𝑡

2
+ 

𝑖𝜔′3

𝛺
𝑠𝑖𝑛 

𝛺𝑡

2

)                                              (13)  

with   𝛺 = (   ω′21 + ω′22  )
½   Since the above matrices refer to the rotating coordinate system (1’, 2’, 3’) we obtain, on comparison 

of the elements of (11) and (13), the probability amplitudes, to be given by      

           a’(t)=𝑐𝑜𝑠  
𝛺𝑡

2
− 

𝑖𝜔′2

𝛺
    𝑠𝑖𝑛 

𝛺𝑡

2
 ,     b’(t) =  

−𝑖𝜔′1

𝛺
  sin

𝛺𝑡

2
                                                       (14)      

for ∆m = 0 case of transition.                                     

The transition probability │ b (t) │2 (=│ b’ (t) │2) for the system (initially in the higher state) to be in the lower state after a time 

t due to the interaction is therefore given buy           

  │b (t) │2 =  
𝜔′2

𝛺2    sin2 
𝛺𝑡

2
 

                                        = 
 ( 

𝜇𝑎𝑏  𝐸0 

ħ
 )2

 ( 
𝜇𝑎𝑏  𝐸0 

ħ
 )2+(𝜔0−𝜔)

 sin2½ t√( 
𝜇𝑎𝑏  𝐸0 

ħ
 )2 + (𝜔0 − 𝜔)                                                        (15)       

(from the explicit expression for 𝜔1’s given by Feynman et al for a coherent applied field E = E0 cos𝜔𝑡 appear to be constants in 

a rotating frame obtained by rotation of the (1-2) plane about the 3rd axis with an angular velocity 𝛚, 𝛚3 = 𝛚0 is the transition 

frequency of the two states). Under the resonance condition 𝛚0 = 𝛚 the transition probability (15) changes to                                    

         │b (t) │2   =   sin2   ½ t ( 
𝜇𝑎𝑏  𝐸0 

ħ
 ) where, α = ½ ( 

𝜇𝑎𝑏  𝐸0 

ħ
 )                                           (16)  

The above results are identical to the results obtained for occupation probability for a two-level spin system in a time-harmonic 

field through solving the Schrodinger equation.     

IV. SOLUTION FOR THE INVERTED POPULATION DIFFERENCE BETWEEN THE LASING LEVELS OF A 3-LEVELS SYSTEM: 

      Literature pointcut that the most widely used quantum mechanical analysis, for the complete and rigorous treatment of a collection 

of multilevel atoms is the density matrix approach. However, they are not very different from the approximate equations obtained 

with simple heuristic arguments.     

 The approximate approach we will develop in this section amounts in essence to treating each separate transition in a 3-level 

(or a multilevel) system as a separate two-level transition and then adding up the various rate equation terms to find the total rate 
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equation for each level in the system. Siegman points out that if applied signals are present at or near various transition frequencies 

𝜔𝑖𝑗  between various levels 𝐸𝑖 and 𝐸𝑗 , then if none of the applied signals is too strong, the following general principles can be applied:       

  (a)  As far as the stimulated response on any particular transition is concerned, that transition may be treated as if it were simply 

an elementary two-level transition between the two energy levels 𝐸𝑖  and 𝐸𝑗 .”               

 The induced response on the transition, in each case, will be proportional to the population difference ∆𝑁 on the transition 

and will be independent of the populations of all the other energy levels, as well as independent of the presence of any allied signals 

on other transitions (provided they keep ∆𝑁 unchanged).                                              

(b)  Only the populations 𝑛𝑖(t) of the two levels will be directly changed by the presence of an applied signal on the transition, 

and these population changes (or more precisely rates of change) can be described in the same rate equation terms as in the equivalent 

two-level case.      

(c) A signal applied at or near a given transition frequency will excite a significant response on that transition only. Multiple 

signals applied simultaneously to several different transitions in the  same atomic system will not directly interact with each 

other.                      

 In other words, however, leaving the indirect effects, it is not the presence or absence of the other signals that counts, but 

simply the population difference that is present, regardless of how it is brought about.     

V. POWER EMITTED AND TIME FOR MAXIMUM POWER OUTPUT: 

The power P(t), emitted from a three-level system at any time t is      

 P(t)= ∆𝑛(𝑡)The power P(t), emitted from a three-level system at any time t is      

                                                P(t)= ∆𝑛(𝑡) 𝜔12ℎ𝜐12                     (17) 

Where ∆𝑛(𝑡) is the population difference at any time t between the lasing levels and is given by   

                 ∆𝑛(𝑡) = 𝑛2(t)  −  𝑛2(t)=(𝐴2 − 𝐴1) +(𝐵2 − 𝐵1)𝑒
𝛼𝑡+(𝐶2 − 𝐶1)𝑒

𝛽𝑡                                (18) 

 On substitution of the values of the constants (i.e. A, B, etc.) and using the approximation that the spontaneous transition 

probabilities are much smaller than the induced ones, for the output power at any time t, we have,     

      

P(𝑡) = 
𝑁

3
 [𝑃21(𝑒3 − 1) − 𝑃22(𝑒1 − 1)] ℎ𝜐12+{[

𝑛2
𝑒−𝑛1

𝑒

2
]  ∙  [1 −

𝜔12−𝜔13

√𝜔12
2 +𝜔13

2 −𝜔12𝜔13

] – 
𝑁

6𝜔12
 [𝑃21(𝑒3 − 1) − 𝑃21(𝑒1 − 1)]         

−[1 +
𝜔12 + 𝜔13

√𝜔12
2 +𝜔13

2 −𝜔12𝜔13

] [𝜔12
2 + 𝜔13

2  √𝜔12
2 + 𝜔13

2 − 𝜔12𝜔13]  ∙ 𝑡 
[ 𝑁 – 3𝑛2 

𝑒 ]

√𝜔12
2 +𝜔13

2 −𝜔12𝜔13
2

 } 𝜔12 ℎ𝜐12 +{[
𝑛2

𝑒−𝑛1
𝑒

2
]  ∙ 

[1 +
𝜔12+𝜔13

√𝜔12
2 +𝜔13

2 −𝜔12𝜔13

] − 
𝑁

6𝜔12
 [𝑃21(𝑒3 − 1) − 𝑃32(𝑒1 − 1)] ∙ [1 −

𝜔12 + 𝜔13

√𝜔12
2 + 𝜔13

2 − 𝜔12𝜔13

] 

 

+
[𝑁 – 3𝑛2 

𝑒 ]

√𝜔12
2 + 𝜔13

2 − 𝜔12𝜔13

 } 𝜔12 ℎ𝜐12 − [
𝜔12 + 𝜔13

√𝜔12
2 + 𝜔13

2 − 𝜔12𝜔13

] ∙ t                                                                     (19) 

At time=0, the power output is P(t=0) = [𝑛2
𝑒 − 𝑛1

𝑒] 𝜔12ℎ𝜐12 and is a negative quantity, since  𝑛2
𝑒 < 𝑛1

𝑒 .          

    

For large value of t, the power output is       

        𝑃(𝑡)𝑙𝑎𝑟𝑔𝑒  = 
𝑁

3
 [𝑃21(𝑒3 − 1) − 𝑃22(𝑒1 − 1)] ℎ𝜐12    (20)  

To find the time 𝑡𝑚, at which the output power will be maximum, we have      

                           
𝑑𝑃(𝑡)

𝑑𝑡
 = [𝛼(𝐵2 − 𝐵1) 𝑒𝛼𝑡𝑚 +𝛽 (𝐶2 − 𝐶1) 𝑒𝛽𝑡𝑚] 𝜔12 ℎ𝜐12  = 0 

                                                or,   
𝑒𝛼𝑡𝑚

𝑒𝛽𝑡𝑚
 =− 

(𝐶2−𝐶1)

(𝐵2−𝐵1)
 
𝛽

𝛼
        

                                                      or,  𝑒𝑡𝑚(𝛼−𝛽) = − 
(𝐶2−𝐶1)

(𝐵2−𝐵1)
  
ℎ+𝐷

ℎ−𝐷
 

or, 𝑡𝑚 = 
1

0.4343 𝐷
 log [− 

(𝐶2−𝐶1)

(𝐵2−𝐵1)
  
ℎ+𝐷

ℎ−𝐷
 ]    (21) 

Again from the expression (2.31) for example,             

 𝑃(𝑡)𝑙𝑎𝑟𝑔𝑒  = 
𝑁

3
 [𝑃21(𝑒3 − 1) − 𝑃32(𝑒1 − 1)] ℎ𝜐12   

we have, for microwave frequency range in steady condition,     

P (t) =  
𝑁

3
  [ 𝑃21(𝑒

−(𝐸2−𝐸1) 𝐾𝑇⁄ − 1)  − 𝑃32(𝑒
−(𝐸3−𝐸2) 𝐾𝑇⁄ − 1)] ℎ𝜐12    

           =    
𝑁

3
  [ 𝑃21 (−

ℎ𝜐12

𝐾𝑇
) − 𝑃32 (−

ℎ𝜐32

𝐾𝑇
)] ℎ𝜐12    

                  For ℎ𝜐𝑖𝑗  ≪ KT     

            =  
𝑁

3
 
ℎ

𝐾𝑇
 {𝑃32𝜐32 − 𝑃21𝜐21}                                                    (22) 

This is exactly the same result as was obtained by Bloembergen.  

VI. CONCLUSION :         

 

 In this topic we have solved the rate equations for the power output from the emissive system at any instant of time 

considering 𝛚𝟏𝟐 as time-independent. the power emitted is found to vary with time which ultimately attains a constant value.      

 The induced response on the transition in each case will be proportional to the population difference on the transition and 

will be independent of the population of all of the other energy levels as well as independent of the presence of any applied signals 
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on other transition. Only the population of two levels will be directly changed by the presence of an applied signal on that particular 

transition and these population changes can be described in the same rate equation terms as in the equivalent two levels case.     

 Thus the rate equation approach to the problem provides a quantitive analysis of power emission from the system but it 

does neither give other physical quantities of interest namely as the polarization induced in the system nor is suitable for any 

qualitative analysis of the problem.    
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